- Which parameters affect most
- Observe impact of change of value of parameter
- Examine and iterate to find change of impacts
- Hyperopt
- Scikit-optimize
- Spearmint
- GPyOpt
- RoBO
- SMAC3
- Tree Based Models (Gradient Boosted Decision Trees - XGBoost, LightGBM, CatBoost)
- RandomForest / ExtraTrees
- Pytorch, Tensorflow, Keras
- SVM, Logistic Regression
- Vowpal, Wabbitm FTRL
- Define function that will run our model
- Specify range of hyper parameter
- Adequate range for search
- Underfitting
- Overfitting
- Good Fit and Generalization
- GBDT - XGBoost, LightGBM, CatBoost
- RandomForest, ExtraTrees - Scikit-learn
- Others - RGF(baidu / fast_rgf)
- XGBoost - max_depth, subsample, colsample_bytree, colsample_bylevel, min_child_weight, lambda, alpha, eta num_round, seed
- LightGBM - max_depth / num_leaves, bagging_fraction, feature_fraction, min_data_in_leaf, lambda_l1, lamda_l2, learning_rate num_iterations, seed
- sklearn.RandomForest/ExtraTrees - N_estimators, max_depth, max_features, min_samples_leaf, n_jobs, random_state
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def xgb_score(param): | |
#run xgboost with parameters 'param' | |
def xgb_hyperopt(): | |
space = { | |
'eta':0.01, | |
'max_depth':hp.quniform('max_depth',10,30,1), | |
'min_child_weight':hp.quniform('min_child_weight',0,100,1), | |
'subsample':hp.quniform('subsample',0.1,1.0,0.1), | |
'gamma':hp.quniform('gamma',0.0,30,0.5), | |
'colsample_bytree':hp.quniform('colsample_bytree',0.1,1.0,0.1), | |
'objective':'reg:linear', | |
'nthread':28, | |
'silent':1, | |
'seed':2441, | |
'early_stopping_rounds':100 | |
} | |
best = fmin(xgb_score,space,algo=tpe.suggest,max_evals=1000) |
No comments:
Post a Comment