"No one is harder on a talented person than the person themselves" - Linda Wilkinson ; "Trust your guts and don't follow the herd" ; "Validate direction not destination" ;

May 31, 2018

Day #111 - OpenCV3 Feature Matching


On Windows platform performed the following installations

pip install opencv-python
pip install opencv-contrib-python


#pip install opencv-python --upgrade
#pip install opencv-contrib-python --upgrade
#pip show opencv-python
#pip show opencv-contrib-python
#pip install opencv-contrib-python==3.3.0.9
import numpy as np
import cv2
import matplotlib.pyplot as plt
img1 = cv2.imread('B4.jpg',0) # queryImage
img2 = cv2.imread('SKU.jpg',0) # trainImage
sift = cv2.xfeatures2d.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
# BFMatcher with default params
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1,des2, k=2)
# Apply ratio test
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append([m])
img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
plt.imshow(img3),plt.show()
print('Number of matches - SIFT')
print(len(good))
# FLANN parameters
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks=100) # or pass empty dictionary
flann = cv2.FlannBasedMatcher(index_params,search_params)
matches = flann.knnMatch(des1,des2,k=2)
# Need to draw only good matches, so create a mask
matchesMask = [[0,0] for i in range(len(matches))]
# ratio test as per Lowe's paper
for i,(m,n) in enumerate(matches):
if m.distance < 0.7*n.distance:
matchesMask[i]=[1,0]
draw_params = dict(matchColor = (0,255,0),
singlePointColor = (255,0,0),
matchesMask = matchesMask,
flags = 0)
print('Number of matches - FLANN')
print(len(draw_params))
img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,matches,None,**draw_params)
#plt.imshow(img3,),plt.show()
# Initiate ORB detector
orb = cv2.ORB_create()
# find the keypoints and descriptors with ORB
kp1, des1 = orb.detectAndCompute(img1,None)
kp2, des2 = orb.detectAndCompute(img2,None)
# create BFMatcher object
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
# Match descriptors.
matches = bf.match(des1,des2)
# Sort them in the order of their distance.
matches = sorted(matches, key = lambda x:x.distance)
print('Number of matches - ORB')
print(len(matches))
#Modified Original code with Minor Changes
#https://docs.opencv.org/3.3.0/dc/dc3/tutorial_py_matcher.html
Happy Learning!!!

No comments: