- Manage data distribution for out of box
- Data Parallelism - Replicate your model on multiple workers
tf.estimator.train_and_evaluate(estimator,....)
Needed for running on multiple machines
#1. Estimator
#2. Run Config
#3. Training Spec
#4. Test Spec
estimator = tf.estimator.LinearRegressor(feature_columns=featcols,config=run_config)
..
tf.estimator.train_and_evaluate(estimator,train_spec,eval_spec)
#5. Checkpoints, Summary
run_config = tf.estimator.RunConfig(model_dir=output_dir,save_summary_steps=100,save_checkpoint_steps=2000)
estimator = tf.estimator.LinearRegressor(config=run_config,....)
#6. Using Data Sets
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn,max_steps=5000)
#7. Eval Spec
tf.estimator.train_and_evaluate(estimator,train_spec,eval_spec)
#8. Evaluation Checkpoint
eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn,steps=100,throttle_secs=600,exporters=...)
#9. Measure for Test data
tf.estimator.train_and_evaluate(estimator,train_spec,eval_spec)
Happy Learning!!!
No comments:
Post a Comment