- Manage data distribution for out of box
- Data Parallelism - Replicate your model on multiple workers
tf.estimator.train_and_evaluate(estimator,....)
Needed for running on multiple machines
#1. Estimator
#2. Run Config
#3. Training Spec
#4. Test Spec
estimator = tf.estimator.LinearRegressor(feature_columns=featcols,config=run_config)
..
tf.estimator.train_and_evaluate(estimator,train_spec,eval_spec)
#5. Checkpoints, Summary
run_config = tf.estimator.RunConfig(model_dir=output_dir,save_summary_steps=100,save_checkpoint_steps=2000)
estimator = tf.estimator.LinearRegressor(config=run_config,....)
#6. Using Data Sets
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn,max_steps=5000)
#7. Eval Spec
tf.estimator.train_and_evaluate(estimator,train_spec,eval_spec)
#8. Evaluation Checkpoint
eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn,steps=100,throttle_secs=600,exporters=...)
#9. Measure for Test data
tf.estimator.train_and_evaluate(estimator,train_spec,eval_spec)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
run_config = tf.estimator.RunConfig(model_dir=output_dir,....) | |
estimator = tf.estimator.LinearRegressor(featcols,config=run_config) | |
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn,max_steps=1000) | |
export_latest = tf.estimator.LatestExporter(serving_input_receiver_fn=serving_input_fn) | |
eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn,exporters=export_latest) | |
tf.estimator.train_and_evaluate(estimator,train_spec,eval_spec) | |
#Shuffling | |
dataset = tf.data.Dataset.list_files("train.csv-*").shuffle(100).flat_map(tf.data.TextLineDataset).map(decode_csv) | |
dataset = dataset.shuffle(1000).repeat(15).batch(128) | |
Happy Learning!!!
No comments:
Post a Comment