"No one is harder on a talented person than the person themselves" - Linda Wilkinson ; "Trust your guts and don't follow the herd" ; "Validate direction not destination" ;

August 29, 2019

Day #271 - FAISS Experiments

Examples on Basic indexes, Binary indexes, Composite indexes in FAISS
  • Exact Results - FlatIndex - index that can guarantee exact results. Types - IndexFlatL2 or IndexFlatIP
  • Somewhat Match - Clustering, then store in buckets "Flat"
  • conda Install on ubuntu. Version that works is - conda install faiss-cpu=1.5.1 -c pytorch -y
  • A similar project for store, fetch data - https://github.com/waltyou/faiss-web-service 
#Example #1
#database_size has to be minium 100, Number of training points (10) should be at least as large as number of clusters (100)
#Sample code to check on dataset, query and find neighbours
import numpy as np
dimensions = 128
database_size = 1000
queries = 1
np.random.seed(1234)
generateddata = np.random.random((database_size,dimensions)).astype('float32')
queriesdata = np.random.random((queries,dimensions)).astype('float32')
#n,d = generateddata.shape
#print(n)
#print(d)
import faiss
#nlist is number of division units
nlist = 100
#Number of neighbours to check
k = 4
quantizer = faiss.IndexFlatL2(dimensions)
index = faiss.IndexIVFFlat(quantizer,dimensions,nlist,faiss.METRIC_L2)
#Need both train & add method, without it errors
index.train(generateddata)
index.add(generateddata)
scores, neighbours = index.search(queriesdata,k)
print(scores)
print(neighbours)
for numbers in neighbours:
for number in numbers:
print(number)
print(generateddata[number])
#Example 2
#Ref - https://gist.github.com/mdouze/8e47d8a5f28280df7de7841f8d77048d
import numpy as np
import faiss
d = 32
numberofqueries = 1
numberofdataentries = 1000
dimensions = 32
querydata = np.random.rand(numberofqueries,32).astype('float32')
dataentries = np.random.rand(numberofdataentries,32).astype('float32')
index = faiss.IndexFlatL2(dimensions)
index.add(dataentries)
Dref, Iref = index.search(querydata,10)
print(Dref)
print(Iref)
#search knn
view raw faissexample.py hosted with ❤ by GitHub
More Reads Link1, Link2

Happy Learning!!!

No comments: