"No one is harder on a talented person than the person themselves" - Linda Wilkinson ; "Trust your guts and don't follow the herd" ; "Validate direction not destination" ;

August 16, 2022

OCR again - 2022 Updates

Donut 🍩, Document understanding transformer, is a new method of document understanding that utilizes an OCR

  • Based on the transformer concept
  • Experimented with the sample colab code
  • Gradio is like streamlit 

Samples and Results











Demo codes Link
# -*- coding: utf-8 -*-
"""colab-demo-for-donut-base-finetuned-cord-v2.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1o07hty-3OQTvGnc_7lgQFLvvKQuLjqiw?usp=sharing
"""
!pip install donut-python
!pip install gradio
import argparse
import gradio as gr
import torch
from PIL import Image
from donut import DonutModel
def demo_process_vqa(input_img, question):
global pretrained_model, task_prompt, task_name
input_img = Image.fromarray(input_img)
user_prompt = task_prompt.replace("{user_input}", question)
output = pretrained_model.inference(input_img, prompt=user_prompt)["predictions"][0]
return output
def demo_process(input_img):
global pretrained_model, task_prompt, task_name
input_img = Image.fromarray(input_img)
output = pretrained_model.inference(image=input_img, prompt=task_prompt)["predictions"][0]
return output
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="cord-v2")
parser.add_argument("--pretrained_path", type=str, default="naver-clova-ix/donut-base-finetuned-cord-v2")
args, left_argv = parser.parse_known_args()
task_name = args.task
if "docvqa" == task_name:
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
else: # rvlcdip, cord, ...
task_prompt = f"<s_{task_name}>"
pretrained_model = DonutModel.from_pretrained(args.pretrained_path)
if torch.cuda.is_available():
pretrained_model.half()
device = torch.device("cuda")
pretrained_model.to(device)
else:
pretrained_model.encoder.to(torch.bfloat16)
pretrained_model.eval()
demo = gr.Interface(
fn=demo_process_vqa if task_name == "docvqa" else demo_process,
inputs=["image", "text"] if task_name == "docvqa" else "image",
outputs="json",
title=f"Donut 🍩 demonstration for `{task_name}` task",
)
demo.launch()


Keep Exploring!!!

No comments: