"No one is harder on a talented person than the person themselves" - Linda Wilkinson ; "Trust your guts and don't follow the herd" ; "Validate direction not destination" ;

April 28, 2018

Day #107 - Data Analysis and Exploration


import pandas as pd
from datetime import datetime
import csv
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import seaborn as sns
import numpy as np
import matplotlib.cbook as cbook
df = pd.read_csv('Booth531113.csv',header=0)
print (df)
df['Date'] = df['Date'].map(lambda x: datetime.strptime(str(x), '%m/%d/%Y'))
x = df['Date']
y = df['Temp']
y1 = df['Mains']
y2 = df['MCU']
y3 = df['Freezer']
plt.plot(x, y)
plt.plot(x, y1)
plt.plot(x, y2)
plt.plot(x, y3)
plt.gca().set_color_cycle(['red', 'green', 'blue', 'yellow'])
plt.legend(['Temp', 'Mains', 'MCU', 'Freezer'], loc='upper left')
plt.title('113')
plt.show()
view raw plotdata.py hosted with ❤ by GitHub
Happy Learning!!!

No comments: