"No one is harder on a talented person than the person themselves" - Linda Wilkinson ; "Trust your guts and don't follow the herd" ; "Validate direction not destination" ;

September 25, 2019

Day # 276 - Segmentation, Age-Gender Estimations

This post is based on current learning's exploring segmentation and age/gender detection.

Experiment #1 - Used the existing model and took faces from edouardjanssens.com for both men / women from 1-100 in increments of 5. The actual result and predicted chart summary

Demo Code



#http://edouardjanssens.com/art/1-to-100-years/men/
#http://edouardjanssens.com/art/1-to-100-years/women/
import cv2
print(cv2.__version__)
import glob, os
from pyagender import PyAgender
agender = PyAgender()
def Approach1():
f = open(r'C:\Data_ML\Data_Scrub\Results.csv','w')
os.chdir(r"C:\Data_ML\Data_Scrub\Boys")
for file in glob.glob("*.*"):
faces = agender.detect_genders_ages(cv2.imread(file))
#print(faces)
print("_________________________________________________")
print(file)
for data in faces:
for key in data:
if(key=='gender' or key == 'age'):
if key=='gender':
if data[key] <0.5:
print(key)
print('Male')
val1 = 'Male'
else:
print(key)
print('Female')
val1 = 'Female'
if key=='age':
print(key)
print(data[key])
val2= data[key]
print("_________________________________________________")
data = file + "," + str(val1) + "," + str(val2) + "\n"
f.write(data)
f.close()
Experiment #2 - Getting Started with Segmentation, Experimented with Repo - https://github.com/divamgupta/image-segmentation-keras

Few tweaks in code

Demo Code
#https://github.com/divamgupta/image-segmentation-keras
import keras_segmentation
model = keras_segmentation.pretrained.pspnet_50_ADE_20K() # load the pretrained model trained on ADE20k dataset
# load 3 pretrained models
out = model.predict_segmentation(
inp=r"E:\Code_Repo\image-segmentation-keras\sample_images\Data1.jpeg",
out_fname=r"E:\Code_Repo\image-segmentation-keras\sample_images\out1.png"
)
model2 = keras_segmentation.pretrained.pspnet_101_cityscapes()
out = model2.predict_segmentation(
inp=r"E:\Code_Repo\image-segmentation-keras\sample_images\Data1.jpeg",
out_fname=r"E:\Code_Repo\image-segmentation-keras\sample_images\out2.png"
)
model3 = keras_segmentation.pretrained.pspnet_101_voc12()
out = model3.predict_segmentation(
inp=r"E:\Code_Repo\image-segmentation-keras\sample_images\Data1.jpeg",
out_fname=r"E:\Code_Repo\image-segmentation-keras\sample_images\out3.png"
)
view raw segdemo.py hosted with ❤ by GitHub
Happy Learning!!!

No comments: