This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#https://github.com/wangxiao5791509/Pedestrian-Attribute-Recognition-Paper-List | |
import cv2 | |
import numpy as np | |
import sys | |
import time | |
import os | |
FACE_DATA_DIR = '/home/upsquared/Documents/projects/Code/faces' | |
DATA_DIR = '/home/upsquared/Documents/projects/Code/samples' | |
RESULTS_DIR = '/home/upsquared/Documents/projects/Code/results' | |
ATTRIBUTES_RESULTS_DIR = '/home/upsquared/Documents/projects/Code/attribute_results' | |
def Detect_Faces(): | |
attr_bin = '/opt/intel/computer_vision_sdk/deployment_tools/intel_models/face-detection-retail-0004/FP32/face-detection-retail-0004.bin' | |
attr_xml = '/opt/intel/computer_vision_sdk/deployment_tools/intel_models/face-detection-retail-0004/FP32/face-detection-retail-0004.xml' | |
ped_net = cv2.dnn.readNet(attr_bin, attr_xml) | |
ped_net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) | |
print("Models loaded") | |
files = os.listdir(FACE_DATA_DIR) | |
#get all files in directory | |
#loop through for all files | |
i = 0 | |
for file in files: | |
filepath = FACE_DATA_DIR + '//'+ file | |
print(filepath) | |
rawframe = cv2.imread(filepath) | |
frame = cv2.resize(rawframe, (300,300)) | |
#https://docs.openvinotoolkit.org/latest/_models_intel_person_detection_retail_0013_description_person_detection_retail_0013.html | |
try: | |
blob = cv2.dnn.blobFromImage(frame,size=(300,300),ddepth=cv2.CV_8U) | |
ped_net.setInput(blob) | |
out = ped_net.forward() | |
predictions = [] | |
for detection in out.reshape(-1,7): | |
image_id,label,conf,x_min,y_min,x_max,y_max = detection | |
print(conf) | |
#print(label) | |
if conf > 0.5: | |
predictions.append(detection) | |
#print(predictions) | |
print(len(predictions)) | |
for detection in predictions: | |
confidence = float(detection[2]) | |
xmin = int(detection[3]*frame.shape[1]) | |
ymin = int(detection[4]*frame.shape[0]) | |
xmax = int(detection[5]*frame.shape[1]) | |
ymax = int(detection[6]*frame.shape[0]) | |
print(xmin,ymin,xmax,ymax) | |
cv2.rectangle(frame,(xmin,ymin),(xmax,ymax),color=(0,255,0)) | |
#Crop and Save | |
cv2.imshow("Result",frame) | |
cv2.waitKey(0) | |
cv2.destroyAllWindows() | |
result_filepath = RESULTS_DIR + '//'+ str(i) + '.jpg' | |
#write the output in directory | |
cv2.imwrite(result_filepath,frame) | |
i = i+1 | |
except: | |
print('Error') | |
print(frame) | |
pass | |
def Detect_Pedestrians_Adas(): | |
attr_bin = '/opt/intel/computer_vision_sdk/deployment_tools/intel_models/pedestrian-detection-adas-0002/FP32/pedestrian-detection-adas-0002.bin' | |
attr_xml = '/opt/intel/computer_vision_sdk/deployment_tools/intel_models/pedestrian-detection-adas-0002/FP32/pedestrian-detection-adas-0002.xml' | |
ped_net = cv2.dnn.readNet(attr_bin, attr_xml) | |
ped_net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) | |
print("Models loaded") | |
files = os.listdir(DATA_DIR) | |
#get all files in directory | |
#loop through for all files | |
i = 0 | |
for file in files: | |
filepath = DATA_DIR + '//'+ file | |
print(filepath) | |
frame = cv2.imread(filepath) | |
#https://docs.openvinotoolkit.org/latest/_models_intel_pedestrian_detection_adas_0002_description_pedestrian_detection_adas_0002.html | |
blob = cv2.dnn.blobFromImage(frame,size=(672,384),ddepth=cv2.CV_8U) | |
ped_net.setInput(blob) | |
out = ped_net.forward() | |
predictions = [] | |
for detection in out.reshape(-1,7): | |
image_id,label,conf,x_min,y_min,x_max,y_max = detection | |
if conf > 0.5: | |
predictions.append(detection) | |
#print(predictions) | |
print(len(predictions)) | |
for detection in predictions: | |
confidence = float(detection[2]) | |
xmin = int(detection[3]*frame.shape[1]) | |
ymin = int(detection[4]*frame.shape[0]) | |
xmax = int(detection[5]*frame.shape[1]) | |
ymax = int(detection[6]*frame.shape[0]) | |
print(xmin,ymin,xmax,ymax) | |
pedestrian = frame[ymin:ymax,xmin:xmax] | |
result_filepath = RESULTS_DIR + '//'+ str(i) + '.jpg' | |
#write the output in directory | |
cv2.imwrite(result_filepath,pedestrian) | |
cv2.rectangle(frame,(xmin,ymin),(xmax,ymax),color=(0,255,0)) | |
i = i+1 | |
cv2.imshow("Result",frame) | |
cv2.waitKey(0) | |
cv2.destroyAllWindows() | |
def Detect_Pedestrians_Retail(): | |
attr_bin = '/opt/intel/computer_vision_sdk/deployment_tools/intel_models/person-detection-retail-0013/FP32/person-detection-retail-0013.bin' | |
attr_xml = '/opt/intel/computer_vision_sdk/deployment_tools/intel_models/person-detection-retail-0013/FP32/person-detection-retail-0013.xml' | |
ped_net = cv2.dnn.readNet(attr_bin, attr_xml) | |
ped_net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) | |
print("Models loaded") | |
files = os.listdir(DATA_DIR) | |
#get all files in directory | |
#loop through for all files | |
i = 0 | |
for file in files: | |
filepath = DATA_DIR + '//'+ file | |
print(filepath) | |
frame = cv2.imread(filepath) | |
#https://docs.openvinotoolkit.org/latest/_models_intel_pedestrian_detection_adas_0002_description_pedestrian_detection_adas_0002.html | |
#blob = cv2.dnn.blobFromImage(frame,size=(384,672),ddepth=cv2.CV_8U) | |
#https://docs.openvinotoolkit.org/latest/_models_intel_person_detection_retail_0013_description_person_detection_retail_0013.html | |
blob = cv2.dnn.blobFromImage(frame,size=(544,320),ddepth=cv2.CV_8U) | |
ped_net.setInput(blob) | |
out = ped_net.forward() | |
predictions = [] | |
for detection in out.reshape(-1,7): | |
image_id,label,conf,x_min,y_min,x_max,y_max = detection | |
#print(conf) | |
#print(label) | |
if conf > 0.5: | |
predictions.append(detection) | |
#print(predictions) | |
print(len(predictions)) | |
for detection in predictions: | |
confidence = float(detection[2]) | |
xmin = int(detection[3]*frame.shape[1]) | |
ymin = int(detection[4]*frame.shape[0]) | |
xmax = int(detection[5]*frame.shape[1]) | |
ymax = int(detection[6]*frame.shape[0]) | |
print(xmin,ymin,xmax,ymax) | |
pedestrian = frame[ymin:ymax,xmin:xmax] | |
result_filepath = RESULTS_DIR + '//'+ str(i) + '.jpg' | |
#write the output in directory | |
cv2.imwrite(result_filepath,pedestrian) | |
cv2.rectangle(frame,(xmin,ymin),(xmax,ymax),color=(0,255,0)) | |
i = i+1 | |
#Crop and Save | |
cv2.imshow("Result",frame) | |
cv2.waitKey(0) | |
cv2.destroyAllWindows() | |
def Detect_Attributes(): | |
attr_bin = '/opt/intel/computer_vision_sdk/deployment_tools/intel_models/person-attributes-recognition-crossroad-0200/FP32/person-attributes-recognition-crossroad-0200.bin' | |
attr_xml = '/opt/intel/computer_vision_sdk/deployment_tools/intel_models/person-attributes-recognition-crossroad-0200/FP32/person-attributes-recognition-crossroad-0200.xml' | |
ped_net = cv2.dnn.readNet(attr_bin, attr_xml) | |
ped_net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) | |
print("Models loaded") | |
files = os.listdir(RESULTS_DIR) | |
#get all files in directory | |
#loop through for all files | |
for file in files: | |
try: | |
filepath = RESULTS_DIR + '//'+ file | |
print(filepath) | |
frame = cv2.imread(filepath,1) | |
#H = 160 | |
#W = 80 | |
h,w = frame.shape[:2] | |
if (w>=80 and h>=160): | |
#https://docs.openvinotoolkit.org/latest/_models_intel_person_attributes_recognition_crossroad_0230_description_person_attributes_recognition_crossroad_0230.html | |
blob = cv2.dnn.blobFromImage(frame,size=(80,160),ddepth=cv2.CV_8U) | |
ped_net.setInput(blob) | |
print("part 1") | |
out = ped_net.forward("453") | |
#print(out) | |
predictions = [] | |
for detection in out.reshape(-1,8): | |
is_male, has_bag, has_backpack, has_hat, has_longsleeves, has_longpants, has_longhair, has_coat_jacket = detection | |
predictions.append(detection) | |
print(predictions) | |
#print(len(predictions)) | |
for detection in predictions: | |
if(detection[0] > 0.5): | |
print('MALE') | |
else: | |
print('Female') | |
if(detection[1] > 0.5): | |
print('Has BAG') | |
if(detection[2] > 0.5): | |
print('has_backpack') | |
if(detection[3] > 0.5): | |
print('has_hat') | |
if(detection[4] > 0.5): | |
print('has_longsleeves') | |
if(detection[5] > 0.5): | |
print('has_longpants') | |
if(detection[6] > 0.5): | |
print('has_longhair') | |
if(detection[7] > 0.5): | |
print('has_coat_jacket') | |
print("part 2") | |
out1 = ped_net.forward("456") | |
print(out1) | |
predictions = [] | |
for detection in out1.reshape(-1,2): | |
point_with_top_colorx, point_with_top_colory = detection | |
predictions.append(detection) | |
for detection in predictions: | |
print(detection[0]) | |
print(detection[1]) | |
print("part 3") | |
out2 = ped_net.forward("459") | |
print(out2) | |
predictions = [] | |
for detection in out2.reshape(-1,2): | |
point_with_bottom_colorx, point_with_bottom_colory = detection | |
predictions.append(detection) | |
for detection in predictions: | |
print(detection[0]) | |
print(detection[1]) | |
except: | |
pass | |
#Detect_Faces() | |
#Detect_Pedestrians_Adas() | |
#Detect_Pedestrians_Retail() | |
Detect_Attributes() | |
No comments:
Post a Comment