- Adding Checkpoint
- Adding Logging
- Plot Results
- Restart Training from Checkpoint
- Early Stopping
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Base code - https://keras.io/examples/mnist_cnn/ | |
#Added Features | |
#======================== | |
# Adding Checkpoint | |
# Adding Logging | |
# Plot Results | |
# Restart Training from Checkpoint | |
from __future__ import print_function | |
import keras | |
from keras.datasets import mnist | |
from keras.models import Sequential | |
from keras.layers import Dense, Dropout, Flatten | |
from keras.layers import Conv2D, MaxPooling2D | |
from keras import backend as K | |
from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping | |
import os | |
batch_size = 128 | |
num_classes = 10 | |
epochs = 5 | |
log_file_path = r'E:\Landmark\mnist_training_log.log' | |
model_checkpoint_path = r"E:\Landmark\\mnist.h5" | |
model_save_path = r"E:\Landmark\\mnist.h5" | |
weights_filepath="E:\\Landmark\\mnist-weights-improvement-{epoch:02d}.hdf5" | |
# input image dimensions | |
img_rows, img_cols = 28, 28 | |
# the data, split between train and test sets | |
(x_train, y_train), (x_test, y_test) = mnist.load_data() | |
if K.image_data_format() == 'channels_first': | |
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) | |
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) | |
input_shape = (1, img_rows, img_cols) | |
else: | |
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) | |
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) | |
input_shape = (img_rows, img_cols, 1) | |
x_train = x_train.astype('float32') | |
x_test = x_test.astype('float32') | |
x_train /= 255 | |
x_test /= 255 | |
print('x_train shape:', x_train.shape) | |
print(x_train.shape[0], 'train samples') | |
print(x_test.shape[0], 'test samples') | |
# convert class vectors to binary class matrices | |
y_train = keras.utils.to_categorical(y_train, num_classes) | |
y_test = keras.utils.to_categorical(y_test, num_classes) | |
from keras.models import load_model | |
#Load and Continue Training | |
# load weights if it exists | |
if os.path.exists(model_checkpoint_path): | |
print('Loading Definitions') | |
model = load_model(model_checkpoint_path) | |
else: | |
model = Sequential() | |
model.add(Conv2D(32, kernel_size=(3, 3), | |
activation='relu', | |
input_shape=input_shape)) | |
model.add(Conv2D(64, (3, 3), activation='relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Dropout(0.25)) | |
model.add(Flatten()) | |
model.add(Dense(128, activation='relu')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(num_classes, activation='softmax')) | |
model.compile(loss=keras.losses.categorical_crossentropy, | |
optimizer=keras.optimizers.Adadelta(), | |
metrics=['accuracy']) | |
#Add Early Stop and Checkpoint | |
early_stop = EarlyStopping(monitor='val_loss', patience=5, verbose=1) | |
checkpoint = ModelCheckpoint(weights_filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='auto') | |
csv_logger = CSVLogger(log_file_path, append=False) | |
callbacks_list = [checkpoint,early_stop,csv_logger] | |
model.fit(x_train, y_train, | |
batch_size=batch_size, | |
epochs=epochs, | |
verbose=1, | |
validation_data=(x_test, y_test), callbacks=callbacks_list) | |
score = model.evaluate(x_test, y_test, verbose=0) | |
print('Test loss:', score[0]) | |
print('Test accuracy:', score[1]) | |
model.save(model_save_path) | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
# Plot the Loss | |
file_name = log_file_path | |
df = pd.DataFrame.from_csv(file_name) | |
print(df.head()) | |
training_loss = df['loss'] | |
test_loss = df['val_loss'] | |
print(training_loss) | |
print(test_loss) | |
epoch_count = range(1, len(training_loss) + 1) | |
plt.plot(epoch_count, training_loss, 'r--') | |
plt.plot(epoch_count, test_loss, 'b-') | |
plt.legend(['Training Loss', 'Test Loss']) | |
plt.xlabel('Epoch') | |
plt.ylabel('Loss') | |
plt.show(); |
Run #1 Output (10 Epochs)
No comments:
Post a Comment