- Save model h5 file after every run/epoch
- Add Data batching to run in smaller iterations, Leverage Sequencer
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import keras | |
from keras.datasets import mnist | |
from keras.models import Sequential | |
from keras.layers import Dense, Dropout, Flatten | |
from keras.layers import Conv2D, MaxPooling2D | |
from keras import backend as K | |
from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping | |
import os | |
import numpy as np | |
import math | |
batch_size = 128 | |
num_classes = 10 | |
epochs = 5 | |
log_file_path = r'E:\Landmark\mnist_training_log.log' | |
model_checkpoint_path = r"E:\Landmark\\mnist.h5" | |
model_save_path = r"E:\Landmark\\mnist_model_{}.hd5.h5" | |
weights_filepath="E:\\Landmark\\mnist-weights-improvement-{epoch:02d}.hdf5" | |
# input image dimensions | |
img_rows, img_cols = 28, 28 | |
# the data, split between train and test sets | |
(x_train, y_train), (x_test, y_test) = mnist.load_data() | |
if K.image_data_format() == 'channels_first': | |
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) | |
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) | |
input_shape = (1, img_rows, img_cols) | |
else: | |
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) | |
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) | |
input_shape = (img_rows, img_cols, 1) | |
x_train = x_train.astype('float32') | |
x_test = x_test.astype('float32') | |
x_train /= 255 | |
x_test /= 255 | |
print('x_train shape:', x_train.shape) | |
print(x_train.shape[0], 'train samples') | |
print(x_test.shape[0], 'test samples') | |
# convert class vectors to binary class matrices | |
y_train = keras.utils.to_categorical(y_train, num_classes) | |
y_test = keras.utils.to_categorical(y_test, num_classes) | |
#Data Batching | |
class Generator(keras.utils.Sequence): | |
# Class is a dataset wrapper for better training performance | |
def __init__(self, x_set, y_set, batch_size, datacount): | |
self.x = x_set | |
self.y = y_set | |
self.batch_size = batch_size | |
self.indices = np.arange(self.x.shape[0]) | |
self.idx = 0 | |
self.datacount = datacount | |
def __len__(self): | |
print('length') | |
print(math.ceil(self.datacount/ self.batch_size)) | |
return math.ceil(self.datacount/ self.batch_size) | |
def __getitem__(self, idx): | |
print('idx') | |
print(idx) | |
i1 = idx*self.batch_size | |
i2 = (idx+1)*self.batch_size | |
print('Start-' + str(i1) + '- End-' + str(i2)) | |
if(i2 > self.datacount): | |
i2 = self.datacount | |
batch_x = self.x[i1:i2] | |
batch_y = self.y[i1:i2] | |
return batch_x, batch_y | |
def on_epoch_end(self): | |
np.random.shuffle(self.indices) | |
#Save Model after every Epoch | |
#https://stackoverflow.com/questions/54323960/save-keras-model-at-specific-epochs | |
class CustomSaver(keras.callbacks.Callback): | |
def on_epoch_end(self, epoch, logs={}): | |
#if epoch == 2: # or save after some epoch, each k-th epoch etc. | |
self.model.save(model_save_path.format(epoch)) | |
batch_size = 500 | |
print('x_train') | |
print(len(x_train)) | |
print('x_test') | |
print(len(x_test)) | |
training_generator = Generator(x_train, y_train, batch_size, len(x_train)) | |
validation_generator = Generator(x_test, y_test, batch_size, len(x_test)) | |
from keras.models import load_model | |
#Load and Continue Training | |
# load weights if it exists | |
if os.path.exists(model_checkpoint_path): | |
print('Loading Definitions') | |
model = load_model(model_checkpoint_path) | |
else: | |
model = Sequential() | |
model.add(Conv2D(32, kernel_size=(3, 3), | |
activation='relu', | |
input_shape=input_shape)) | |
model.add(Conv2D(64, (3, 3), activation='relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Dropout(0.25)) | |
model.add(Flatten()) | |
model.add(Dense(128, activation='relu')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(num_classes, activation='softmax')) | |
model.compile(loss=keras.losses.categorical_crossentropy, | |
optimizer=keras.optimizers.Adadelta(), | |
metrics=['accuracy']) | |
#Add Early Stop and Checkpoint | |
early_stop = EarlyStopping(monitor='val_loss', patience=5, verbose=1) | |
checkpoint = ModelCheckpoint(weights_filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='auto') | |
csv_logger = CSVLogger(log_file_path, append=False) | |
saver = CustomSaver() | |
callbacks_list = [checkpoint,early_stop,csv_logger,saver] | |
model.fit_generator(training_generator, validation_data = validation_generator, epochs = 10, callbacks=callbacks_list) | |
score = model.evaluate(x_test, y_test, verbose=0) | |
print('Test loss:', score[0]) | |
print('Test accuracy:', score[1]) | |
model.save(model_save_path) | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
# Plot the Loss | |
file_name = log_file_path | |
df = pd.DataFrame.from_csv(file_name) | |
print(df.head()) | |
training_loss = df['loss'] | |
test_loss = df['val_loss'] | |
print(training_loss) | |
print(test_loss) | |
epoch_count = range(1, len(training_loss) + 1) | |
plt.plot(epoch_count, training_loss, 'r--') | |
plt.plot(epoch_count, test_loss, 'b-') | |
plt.legend(['Training Loss', 'Test Loss']) | |
plt.xlabel('Epoch') | |
plt.ylabel('Loss') | |
plt.show(); |
This is a template code. This can be customized for larger datasets
Happy Learning!!!
No comments:
Post a Comment