What aspects are automated?
dark, light, odd_aspect_ratio, low_information, exact_duplicates, near_duplicates, blurry, grayscale images
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#https://github.com/cleanlab/cleanvision/ | |
!pip install cleanvision | |
from google.colab import drive | |
drive.mount('/content/drive') | |
#dark, light, odd_aspect_ratio, low_information, exact_duplicates, near_duplicates, blurry, grayscale images | |
from cleanvision.imagelab import Imagelab | |
# Specify path to folder containing the image files in your dataset | |
imagelab = Imagelab(data_path="/content/drive/MyDrive/SampleImages/") | |
# Automatically check for a predefined list of issues within your dataset | |
imagelab.find_issues() | |
# Produce a neat report of the issues found in your dataset | |
imagelab.report() | |
#https://github.com/cleanlab/cleanvision/blob/main/examples/run.py | |
imagelab.save("./results") | |
#https://github.com/cleanlab/cleanvision-examples/blob/main/tutorial.ipynb | |
imagelab.issue_summary | |
imagelab.issues.head() | |
type(imagelab.issues) | |
imagelab.issues | |
#blurry_images = imagelab.issues[imagelab.issues["is_blurry_issue"] == True].sort_values(by=['blurry_score']) | |
#blurry_image_files = blurry_images.index.tolist() | |
imagelab.info.keys() | |
imagelab.info['statistics'].keys() | |
imagelab.info['statistics']['entropy'] | |
imagelab.info['exact_duplicates']['num_sets'] |
Keep Exploring!!!
No comments:
Post a Comment