This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
#Tip #1 | |
#Data frame to matrix | |
df = pd.DataFrame({'A':[1,2,3,4],'B':[5,6,7,8],'C':[5,6,7,8]}) | |
print(df) | |
#Tip #2 | |
#Standardize value in columns | |
df["A"] = (df["A"]-df["A"].mean())/np.std(df["A"]) | |
#Tip #3 | |
#Dynamically stardardize except last column | |
for col in df.columns[:-1]: | |
df[col] = (df[col] - df[col].mean())/ (np.std(df[col])) | |
print(df) | |
features = list(df.columns[:-1]) | |
#Tip #4 - Replance na values | |
df = df.fillna(-9999) | |
#Tip #5 | |
#Dynamically add columns | |
for i in range(0,2): | |
colname1 = str(5+i) | |
col1 = i | |
col2 = i+1 | |
print('colname', colname1) | |
print('col1', col1) | |
print('col2', col2) | |
if(col2 < 2): | |
df[colname1] = df[features[col1]]*df[features[col2]] | |
print('newly added columns') | |
print(df) |
No comments:
Post a Comment