"No one is harder on a talented person than the person themselves" - Linda Wilkinson ; "Trust your guts and don't follow the herd" ; "Validate direction not destination" ;

October 12, 2016

Day #37 - Numpy Learnings - Matrices

import pandas as pd
import numpy as np
df = pd.DataFrame({'A':[1.1,2.2,3.1],'B':[5.2,6.1,7.1],'C':[5.4,6.6,7.4]})
print(df)
#Tip #1
#Create matrix of float values
data_intermediate = df.astype(float)
data_matrix = np.matrix(data_intermediate)
print('matrix')
print(data_matrix)
#Tip #2 Compute Transpose
print('Transpose matrix')
print(np.transpose(data_matrix))
#Tip #3 - Matrix Inverse
print('Inverse matrix')
print(data_matrix.I)
#Tip #4 - Identity Matrix
print('Identity Matrix')
print(np.identity(3))
print('Identity Matrix X Data ')
print(np.identity(3)*data_matrix)
#Tip #5 - Eigen Values
print('Eigen Values')
print(np.linalg.eigvals(data_matrix))
#Tip #6 - Eigen Vectors
w, v= np.linalg.eig(data_matrix)
print('Eigen Vector')
print(v)
#Tip #7 - svd
print('SVD')
print(np.linalg.svd(data_matrix))
view raw numpybasics.py hosted with ❤ by GitHub


Happy Learning!!!

No comments: