This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
df = pd.DataFrame({'A':[1.1,2.2,3.1],'B':[5.2,6.1,7.1],'C':[5.4,6.6,7.4]}) | |
print(df) | |
#Tip #1 | |
#Create matrix of float values | |
data_intermediate = df.astype(float) | |
data_matrix = np.matrix(data_intermediate) | |
print('matrix') | |
print(data_matrix) | |
#Tip #2 Compute Transpose | |
print('Transpose matrix') | |
print(np.transpose(data_matrix)) | |
#Tip #3 - Matrix Inverse | |
print('Inverse matrix') | |
print(data_matrix.I) | |
#Tip #4 - Identity Matrix | |
print('Identity Matrix') | |
print(np.identity(3)) | |
print('Identity Matrix X Data ') | |
print(np.identity(3)*data_matrix) | |
#Tip #5 - Eigen Values | |
print('Eigen Values') | |
print(np.linalg.eigvals(data_matrix)) | |
#Tip #6 - Eigen Vectors | |
w, v= np.linalg.eig(data_matrix) | |
print('Eigen Vector') | |
print(v) | |
#Tip #7 - svd | |
print('SVD') | |
print(np.linalg.svd(data_matrix)) |
Happy Learning!!!
No comments:
Post a Comment