This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Tensorflow on CPU | |
=================== | |
Follow all steps in previous article, | |
#Not Needed CUDA | |
Step 2 - Cleanup Tensorflow | |
============================= | |
#Had to manually goto folder remove all packages named tf, tensorflow, tensorboard | |
#C:\Users\XXXXXX\AppData\Local\Continuum\anaconda3\envs\tflow\Lib\site-packages | |
pip install --ignore-installed --upgrade tensorflow | |
conda install jupyter | |
conda install scipy | |
Step 3 - Custom Training | |
========================= | |
Goto Link https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md | |
Download http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2018_01_28.tar.gz | |
C:\Tensorflow1\models\research\object_detection\faster_rcnn_inception_v2_coco_2018_01_28 | |
Download code from https://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10 | |
Extract to C:\Tensorflow1\models\research\object_detection\TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10-master | |
Replace in C:\Tensorflow1\models\research\object_detection | |
Delete file in C:\Tensorflow1\models\research\object_detection\training, C:\Tensorflow1\models\research\object_detection\inference_graph, C:\Tensorflow1\models\research\object_detection\images (test and training label xls files) | |
Step#4 - Command | |
================== | |
cd C:\Tensorflow1\models\research | |
protoc --python_out=. .\object_detection\protos\anchor_generator.proto .\object_detection\protos\argmax_matcher.proto .\object_detection\protos\bipartite_matcher.proto .\object_detection\protos\box_coder.proto .\object_detection\protos\box_predictor.proto .\object_detection\protos\eval.proto .\object_detection\protos\faster_rcnn.proto .\object_detection\protos\faster_rcnn_box_coder.proto .\object_detection\protos\grid_anchor_generator.proto .\object_detection\protos\hyperparams.proto .\object_detection\protos\image_resizer.proto .\object_detection\protos\input_reader.proto .\object_detection\protos\losses.proto .\object_detection\protos\matcher.proto .\object_detection\protos\mean_stddev_box_coder.proto .\object_detection\protos\model.proto .\object_detection\protos\optimizer.proto .\object_detection\protos\pipeline.proto .\object_detection\protos\post_processing.proto .\object_detection\protos\preprocessor.proto .\object_detection\protos\region_similarity_calculator.proto .\object_detection\protos\square_box_coder.proto .\object_detection\protos\ssd.proto .\object_detection\protos\ssd_anchor_generator.proto .\object_detection\protos\string_int_label_map.proto .\object_detection\protos\train.proto .\object_detection\protos\keypoint_box_coder.proto .\object_detection\protos\multiscale_anchor_generator.proto .\object_detection\protos\graph_rewriter.proto | |
python setup.py build | |
python setup.py install | |
cd C:\Tensorflow1\models\research\object_detectiona | |
jupyter notebook object_detection_tutorial.ipynb | |
Finally was able to train Custom Object Detection
Notes on Custom Object Detection (Notes - Link )
Step #1 - Define Inputs - Specify files in TFRecord file format
Step #2 - Configure Train_config. Key Values are
- Model parameter initialization.
- Input preprocessing.
- SGD parameters.
Step #3 - fine_tune_checkpoint should provide a path to the pre-existing checkpoint, To speed up the training process, it is recommended that users re-use the feature extractor parameters from a pre-existing image classification or object detection checkpoint
Step #4 - SGD - hyperparameters for gradient descent
Step #5 - Evaluator Config)
To get reasonable mAP@IoU scores for object detection API:
1. Try varying the Intersection over Union (IoU) threshold, e.g 0.2-0.5 and see if you get an increase in average precision. You would have to modify matching_iou_threshold parameter in object_detection/utils/object_detection_evaluation.py
2. Try different evaluator classes (the default one is EVAL_DEFAULT_METRIC = 'pascal_voc_detection_metrics'). If you are training on Open Image Dataset it makes sense to use open_images_V2_detection_metrics
3. Check your eval config file and increase the number of examples used in the evaluation set, e.g.
eval_config: {
num_examples: 20000
num_visualizations: 16
min_score_threshold: 0.2
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 1
}
4. Train the object detector for more iterations
5. Check current mAP against reported metrics (e.g. COCO mAP@IoU=0.5)
Step by Step: Build Your Custom Real-Time Object Detector - Link
Detectron2 Train a Instance Segmentation Model
Installing the Tensorflow Object Detection API
For custom object training BMW has shared their opensource
framework. It is a packaged version of the complete object detection setup.
(Yolo / TensorFlow this is good set of tools)
Happy Mastering DL!!!
No comments:
Post a Comment