"No one is harder on a talented person than the person themselves" - Linda Wilkinson ; "Trust your guts and don't follow the herd" ; "Validate direction not destination" ;

October 19, 2019

Day #287 - Dlib Custom Detector

Learning's
  • Aspect ratio needs to be maintained
  • Trained for only one type of Object (Vim Dishwasher)
  • Trained with just a few images 30 images of train and 5 images of test
  • Environment - Windows 10, After all the Setup and Steps, It would take ~45 mins to develop for label, training, and testing
Data Set
  • Custom Shelf and Vim dishwash Detection
Image Pre-requisites
  • I resized data to 512 x 512 format to be consistent
  • Place all images in train and test directory respectively before next steps
Label Training Data
  • Img Lab Installation - Refer previous post
  • Use Shift key to select rectangle
  • Use Alt D to delete region
  • Each tool has its own commands
Step 1 - Specify XML and image path
=====================================
E:\Code_Repo\dlib\tools\imglab\build\Release\imglab.exe -c E:\Code_Repo\dlib_obj_count\ShelfData\train\train.xml E:\Code_Repo\dlib_obj_count\ShelfData\train
Step 2
=======
cd E:\Code_Repo\dlib_obj_count
Step 3
=======
imglab.exe E:\Code_Repo\dlib_obj_count\ShelfData\train\train.xml



Label Testing Data

Step 1
========
E:\Code_Repo\dlib\tools\imglab\build\Release\imglab.exe -c E:\Code_Repo\dlib_obj_count\ShelfData\test\test.xml E:\Code_Repo\dlib_obj_count\ShelfData\test
Step 2
======
cd E:\Code_Repo\dlib_obj_count
Step 3
======
imglab.exe E:\Code_Repo\dlib_obj_count\ShelfData\test\test.xml

Training Code


#Base code - https://gist.github.com/atotto/c1ccbfa44ee70a476816f6389834945e
#Minor changes for my requirements
import os
import sys
import dlib
options = dlib.simple_object_detector_training_options()
options.add_left_right_image_flips = False
options.C = 5
options.num_threads = 2
options.be_verbose = True
training_xml_path = r'E:\Code_Repo\dlib_obj_count\ShelfData\train\train.xml'
testing_xml_path = r'E:\Code_Repo\dlib_obj_count\ShelfData\test\test.xml'
dlib.train_simple_object_detector(training_xml_path, r'E:\Code_Repo\dlib_obj_count\ShelfData\detector.svm', options)
print("")
print("Training accuracy")
print(dlib.test_simple_object_detector(training_xml_path, r'E:\Code_Repo\dlib_obj_count\ShelfData\detector.svm'))
print("Testing accuracy")
print(dlib.test_simple_object_detector(testing_xml_path, r'E:\Code_Repo\dlib_obj_count\ShelfData\detector.svm'))
view raw train_dlib.py hosted with ❤ by GitHub


Test Code

import dlib
import cv2
detector = dlib.simple_object_detector(r'E:\Code_Repo\dlib_obj_count\ShelfData\detector.svm')
filepath = r'E:\Code_Repo\dlib_obj_count\ShelfData\test\25.png'
img = cv2.imread(filepath,1)
dets = detector(img)
for d in dets:
cv2.rectangle(img, (d.left(), d.top()), (d.right(), d.bottom()), (0, 0, 255), 2)
# Display the resulting frame
cv2.imshow("frame",img)
cv2.waitKey(0)
# When everything done, release the capture
cv2.destroyAllWindows()
view raw test_dlib.py hosted with ❤ by GitHub


Result

No comments: