This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torchvision | |
import torchvision.transforms as transforms | |
#root - Location on disc | |
#Training Set Data Preperation | |
#Composition of Transformations | |
train_set = torchvision.datasets.FashionMNIST(root = 'C:\Intel\Data', train=True, download=True,transform=transforms.Compose([transforms.ToTensor()])) | |
train_loader = torch.utils.data.DataLoader(train_set, batch_size=10) | |
import numpy as np | |
import matplotlib.pyplot as plt | |
print(len(train_set)) | |
print(train_set.train_labels) | |
print(train_set.train_labels.bincount()) | |
sample = next(iter(train_set)) | |
print(len(sample)) | |
print(type(sample)) | |
image,label = sample | |
print(image.shape) | |
plt.imshow(image.squeeze(),cmap='gray') | |
print('label:',label) | |
batch = next(iter(train_loader)) | |
print(len(batch)) | |
print(type(batch)) | |
images,labels = batch | |
print(images.shape) | |
print(labels.shape) | |
grid = torchvision.utils.make_grid(images,nrow=10) | |
plt.figure(figsize=(15,15)) | |
plt.imshow(np.transpose(grid,(1,2,0))) | |
print('labels:',labels) | |
train_loader = torch.utils.data.DataLoader(train_set, batch_size=100) | |
batch = next(iter(train_loader)) | |
images,labels = batch | |
grid = torchvision.utils.make_grid(images,nrow=10) | |
plt.figure(figsize=(15,15)) | |
plt.imshow(np.transpose(grid,(1,2,0))) | |
print('labels:',labels) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Prepare Data | |
#Build Model | |
#Train Model | |
#Analyze Model | |
#Extract from Data Source | |
#Transform in Desirable format | |
#Load the Data | |
import torch | |
import torchvision | |
import torchvision.transforms as transforms | |
#pytorch has dataset and dataloader | |
class OHLC(Dataset): | |
def __init__(self,csv_file): | |
self.data = pd.read_csv(csv_file) | |
def __getitem__(self,index): | |
r = self.data.iloc[index] | |
label = torch.tensor(r.is_up_day,dtype=torch.long) | |
sample = self.normalize(torch.tensor([r.open,r.high,r.low,r.close])) | |
return sample,label | |
def __len__(self): | |
return len(self.data) | |
Happy Mastering DL!!!
No comments:
Post a Comment