"No one is harder on a talented person than the person themselves" - Linda Wilkinson ; "Trust your guts and don't follow the herd" ; "Validate direction not destination" ;

March 29, 2019

Day #229 - Running Pytorch Model in OpenVino

Step 1 - ONNX Pre-Requisites Install


Step 2 - Save Pytorch Model in ONNX Format

from torchreid import models
print(models.show_avai_models())
from torch.autograd import Variable
import torch.onnx
import torchvision
#H-256
#W-128
dummy_input = torch.randn(1,3,256,128)
#dummy_input = torch.randn(1,3,128,256)
model = models.build_model('resnet50',751,loss='softmax')
#model = models.resnet50mid(pretrained=True)
torch.onnx.export(model,dummy_input,"resnet50mid.onnx")
view raw pytorch_onnx.py hosted with ❤ by GitHub
#Customize and Run this model

Step 3 - Goto Model Optimizer Directory
sudo python3 mo.py --input_model /home/ubuntu/code/resnet51mid.onnx 
<code>python3 mo.py --input_model <INPUT_MODEL>.onnx</code>



This will generate the required xml to be run with OpenVino Model

Step 4 - Custom Model Training

import torchreid
datamanager = torchreid.data.ImageDataManager(
root='reid-data',
sources='market1501',
height=160,
width=64,
batch_size=32,
market1501_500k=False)
model = torchreid.models.build_model(
name = 'resnet50',
num_classes = datamanager.num_train_pids,
loss='softmax',
pretrained=True)
optimizer = torchreid.optim.build_optimizer(
model,
optim='adam',
lr=0.0003)
scheduler = torchreid.optim.build_lr_scheduler(
optimizer,
lr_scheduler='single_step',
stepsize=20)
engine = torchreid.engine.ImageSoftmaxEngine(datamanager,
model,
optimizer=optimizer,
scheduler=scheduler,
label_smooth=True)
engine.run(save_dir='log/resnet50',
max_epoch=3,
eval_freq=10,
print_freq=10,
test_only=False)
view raw Reid_Train.py hosted with ❤ by GitHub

Step 5 - Custom Model Export

from torchreid import models
print(models.show_avai_models())
from torch.autograd import Variable
import torch.onnx
import torchvision
import torchreid
datamanager = torchreid.data.ImageDataManager(
root='reid-data',
sources='market1501',
height=160,
width=64,
batch_size=32,
market1501_500k=False)
#import mymodel
#H - 164
#W - 64
dummy_input = torch.randn(1,3,164,64)
model = torchreid.models.build_model(
name = 'resnet50',
num_classes = datamanager.num_train_pids,
loss='softmax',
pretrained=False)
state_dict = torch.load('mymodel.pth')
model.load_state_dict(state_dict,strict=False)
torch.onnx.export(model,dummy_input,"resnet51mid.onnx")
view raw Re_idonnx.py hosted with ❤ by GitHub

./pedestrian_tracker_demo -i /home/ubuntu/code/smarthub_915am_cut.mp4.mp4 -m_det /opt/intel/computer_vision_sdk/deployment_tools/intel_models/person-detection-retail-0013/FP32/person-detection-retail-0013.xml -m_reid /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/resnet51mid.xml -d_det CPU

Happy Mastering DL!!!

No comments: