Step 2 - Save Pytorch Model in ONNX Format
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from torchreid import models | |
print(models.show_avai_models()) | |
from torch.autograd import Variable | |
import torch.onnx | |
import torchvision | |
#H-256 | |
#W-128 | |
dummy_input = torch.randn(1,3,256,128) | |
#dummy_input = torch.randn(1,3,128,256) | |
model = models.build_model('resnet50',751,loss='softmax') | |
#model = models.resnet50mid(pretrained=True) | |
torch.onnx.export(model,dummy_input,"resnet50mid.onnx") |
Step 3 - Goto Model Optimizer Directory
sudo python3 mo.py
--input_model /home/ubuntu/code/resnet51mid.onnx
<code>python3 mo.py --input_model <INPUT_MODEL>.onnx</code>
This will generate the required xml to be run with OpenVino Model
Step 4 - Custom Model Training
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torchreid | |
datamanager = torchreid.data.ImageDataManager( | |
root='reid-data', | |
sources='market1501', | |
height=160, | |
width=64, | |
batch_size=32, | |
market1501_500k=False) | |
model = torchreid.models.build_model( | |
name = 'resnet50', | |
num_classes = datamanager.num_train_pids, | |
loss='softmax', | |
pretrained=True) | |
optimizer = torchreid.optim.build_optimizer( | |
model, | |
optim='adam', | |
lr=0.0003) | |
scheduler = torchreid.optim.build_lr_scheduler( | |
optimizer, | |
lr_scheduler='single_step', | |
stepsize=20) | |
engine = torchreid.engine.ImageSoftmaxEngine(datamanager, | |
model, | |
optimizer=optimizer, | |
scheduler=scheduler, | |
label_smooth=True) | |
engine.run(save_dir='log/resnet50', | |
max_epoch=3, | |
eval_freq=10, | |
print_freq=10, | |
test_only=False) | |
Step 5 - Custom Model Export
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from torchreid import models | |
print(models.show_avai_models()) | |
from torch.autograd import Variable | |
import torch.onnx | |
import torchvision | |
import torchreid | |
datamanager = torchreid.data.ImageDataManager( | |
root='reid-data', | |
sources='market1501', | |
height=160, | |
width=64, | |
batch_size=32, | |
market1501_500k=False) | |
#import mymodel | |
#H - 164 | |
#W - 64 | |
dummy_input = torch.randn(1,3,164,64) | |
model = torchreid.models.build_model( | |
name = 'resnet50', | |
num_classes = datamanager.num_train_pids, | |
loss='softmax', | |
pretrained=False) | |
state_dict = torch.load('mymodel.pth') | |
model.load_state_dict(state_dict,strict=False) | |
torch.onnx.export(model,dummy_input,"resnet51mid.onnx") |
./pedestrian_tracker_demo
-i /home/ubuntu/code/smarthub_915am_cut.mp4.mp4 -m_det
/opt/intel/computer_vision_sdk/deployment_tools/intel_models/person-detection-retail-0013/FP32/person-detection-retail-0013.xml
-m_reid /opt/intel/computer_vision_sdk/deployment_tools/model_optimizer/resnet51mid.xml
-d_det CPU
Happy Mastering DL!!!
No comments:
Post a Comment