This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#cosine similarity example python | |
#importing libraries | |
from sklearn.metrics.pairwise import cosine_similarity | |
from scipy import spatial | |
#creating two vectors | |
vector_a = [1,1,0,0] | |
vector_b = [1,1,1,0] | |
vector_c = [1,0,1,0] | |
#calculating cosine similarity | |
cos_sim = cosine_similarity([vector_a], [vector_b])[0][0] | |
#printing cosine similarity and cosine distance | |
print('Cosine similarity: A - B ', cos_sim) | |
#calculating cosine similarity | |
cos_sim = cosine_similarity([vector_a], [vector_c])[0][0] | |
#printing cosine similarity and cosine distance | |
print('Cosine similarity: A - C ', cos_sim) | |
#Euclidean similarity example | |
#importing the necessary libraries | |
from scipy.spatial import distance | |
#calculating the euclidean distance | |
euclidean_distance = distance.euclidean(vector_a, vector_b) | |
#calculating the euclidean similarity | |
euclidean_similarity = 1/(1 + euclidean_distance) | |
#printing the euclidean similarity | |
print(euclidean_similarity) | |
#calculating the euclidean distance | |
euclidean_distance = distance.euclidean(vector_a, vector_c) | |
#calculating the euclidean similarity | |
euclidean_similarity = 1/(1 + euclidean_distance) | |
#printing the euclidean similarity | |
print(euclidean_similarity) | |
#manhattan similarity example | |
# Calculate Manhattan similarity between two vectors | |
import numpy as np | |
def manhattan_similarity(vec1, vec2): | |
return np.sum(np.abs(vec1 - vec2)) | |
print(manhattan_similarity(np.array(vector_a), np.array(vector_b))) | |
print(manhattan_similarity(np.array(vector_a), np.array(vector_c))) |
Keep Exploring!!!
No comments:
Post a Comment