Minor fixes in UNET Code
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#minor fixes of https://github.com/zhixuhao/unet | |
import tensorflow as tf | |
from tensorflow.keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D, Conv2DTranspose, concatenate, BatchNormalization, Dropout | |
from tensorflow.keras.models import Model | |
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint | |
from tensorflow.keras.optimizers import Adam | |
from tensorflow.keras import regularizers | |
from tensorflow.keras.callbacks import ReduceLROnPlateau | |
def unet_newmodel(): | |
input_size = (256,256,1) | |
inputs = Input(input_size) | |
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs) | |
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1) | |
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) | |
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1) | |
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2) | |
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) | |
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2) | |
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3) | |
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) | |
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3) | |
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4) | |
drop4 = Dropout(0.5)(conv4) | |
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) | |
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4) | |
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5) | |
drop5 = Dropout(0.5)(conv5) | |
up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5)) | |
merge6 = concatenate([drop4,up6], axis = 3) | |
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6) | |
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6) | |
up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6)) | |
merge7 = concatenate([conv3,up7], axis = 3) | |
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7) | |
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7) | |
up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7)) | |
merge8 = concatenate([conv2,up8], axis = 3) | |
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8) | |
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8) | |
up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8)) | |
merge9 = concatenate([conv1,up9], axis = 3) | |
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9) | |
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) | |
conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) | |
conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9) | |
model = Model(inputs = inputs, outputs = conv10) | |
model.compile(optimizer = Adam(learning_rate = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy']) | |
return model |
Keep Exploring!!!
No comments:
Post a Comment